The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  X  1  1  X  X  1  1  1  1  X  3  X  1
 0  X  0  0 2X X+3  X 2X+3 2X  6  3 X+3 X+3 2X+3 2X  3 X+6 2X+3  X X+3  X 2X  6 2X+6  0 X+3 2X+3  X  X  3  X  6 X+6 X+3  X  6 X+3  3 X+3  3  3  0 2X+3  0 2X 2X+3 2X 2X 2X+3 2X  6 2X  6 2X+3  3 2X+3  3  0 2X  3 2X+3 X+3  0 2X+6 2X+6  0 X+3  6 2X+6 2X+6 2X+6 X+6  3 X+3 2X+3 X+6  6 X+3  0 X+3 2X+3 2X+6 X+6 2X X+6 X+3 X+6  X 2X  X 2X  6
 0  0  X 2X  6 2X+3  X X+3 2X+6 2X+3  0 2X+3  6 2X  6  X  X X+6 2X  0 X+6 2X 2X+3 X+6 X+6  0  3 2X+3  X  0  6  6 X+3 2X+6 X+6  X 2X 2X  3 2X+3 X+3  0  6 X+3 2X X+6  3 2X+3 2X  X  3  3 X+6 X+3 X+3 2X+3  X 2X+3 X+3  3 2X+6 2X+3 2X  0  X  6 X+6  6  6  6 X+6 X+6 2X 2X+6  X  3 2X+3  0  6 2X  3 X+3  6  6 2X+3  3 2X+3  6 2X+3 X+3 2X+6 X+6
 0  0  0  6  0  0  0  0  0  0  3  6  3  6  3  3  6  3  3  6  3  3  3  6  6  3  6  3  3  6  0  3  6  0  0  3  6  3  6  0  6  6  0  0  6  6  3  0  3  0  3  6  0  6  3  3  6  6  3  0  6  0  3  0  6  0  0  6  6  3  3  3  6  3  0  0  6  3  3  6  0  0  0  3  3  0  0  3  6  0  6  6

generates a code of length 92 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 177.

Homogenous weight enumerator: w(x)=1x^0+454x^177+72x^178+216x^179+518x^180+216x^181+864x^182+416x^183+810x^184+1512x^185+236x^186+360x^187+324x^188+200x^189+114x^192+102x^195+98x^198+28x^201+18x^204+2x^252

The gray image is a code over GF(3) with n=828, k=8 and d=531.
This code was found by Heurico 1.16 in 8.03 seconds.